We waste a lot of heat

Washington State Energy Map

Petroleum 752 TBtu
Natural Gas 272 TBtu
Coal 57 TBtu
Renewables 144 TBtu
Hydro/Nuclear 351 TBtu
Electricity 517 TBtu
Transportation 598 TBtu
Industrial 381 TBtu
Res/Commercial 399 TBtu
Export 45 TBtu

Total generation

Total consumption

Wasted heat = 860 Trillion BTU!

2011 US Dept of Energy EIA data
Where does our “wasted heat” go?

- Automobiles and trucks waste heat through tailpipes and into the air
- Per EIA data, Washington’s fleet of thermal power plant (natural gas, coal, MSW & nuclear) is 31% energy efficient meaning we waste 69% of the energy as heat rejected into the air
- Industrial plants often send their wasted heat through ‘cooling-towers’ into the air
- Commercial and residential buildings send waste heat into the ground (sewer) and into the air (chimney or flue)
Why do we waste heat?

- For 3 decades State energy strategies and policies have been dominated by ‘electricity’ technologies and projects.
- There is little to no incentive to capture and reuse wasted heat.
 - Project “payback”?
 - Electricity is inexpensive in the Washington so it is not “cost-effective” to recycle and reuse wasted heat.
 - Air emissions?
 - Electricity is clean in Washington so no need to recycle and reuse the wasted heat.
Why do we waste heat?

- Thermal energy has been largely forgotten – yet we waste 3x more heat than we use!
- Reusing wasted heat from power plants and buildings is “energy conservation”, but is not included in the State’s energy policy or the 2012 State Energy Strategy
- Energy conservation is a carbon reduction strategy
- We can recover and reuse wasted heat to conserve energy and reduce CO2 emissions
Waste Heat Recovery strategies

- **Combined Heat and Power (CHP)**
 - Also known as “high-efficiency cogeneration” in 1937 but not integrated into IRP’s
 - Used in power plants, industrial sites, and individual commercial and residential buildings

- **District Energy (DE)**
 - City or campus setup, distributes hot water/steam to buildings through a network of pipes; the heat sink that never goes away.

- **Waste Heat to Power (WH2P)**
 - Using waste heat to produce electricity
 - Emerging technologies growing this field.
CHP = Combined Heat and Power

Standard Power Plant
- 100% Fuel Input
- 60% "Waste" heat rejected to environment
- 40% Useful energy produced for electricity

District Energy/Combined Heat and Power Plant
- 100% Fuel Input
- 20% "Waste" heat rejected to environment
- 40% Useful energy produced for heating and/or cooling via district energy system
- 40% Useful energy produced for electricity
Real Efficiency needs to address location:

- Combined Heat and Power (CHP) paired with District Energy:
 - The use of the heat it tied to long term assets reducing risk significantly.
 - Heat load centers are the same as electric load centers; they are the same buildings.
 - Using generation at the load centers allows for other power features like:
 - Avoids 9% transmission loss
 - Allows local power factor management
 - Allows electric load balancing
 - Who are the heat load centers?
 - District heating utilities (Seattle Steam)
 - University Campus’ across the state
 - Military campus’s
 - And of course – Government centers
Excess seasonal electricity (hydro, wind) is used to make heat in a district energy system. Balances wind and hydro power by making heat. Displaces fossil-fuel normally used to create heat. Takes advantage of existing district energy systems and encourages development of more to balance further wind and solar development. Currently no policy (and limited markets) to deal with complexity of ‘fuel switching’ or local area power factor (PF) support.
Country Percentage of Electricity Provided by CHP

CHP in a Global Context – 20% Capacity Goal is Reachable
Cost impacts of CHP?

Summary of Levelized Cost of Generation Resources
On Line in 2016

20MW CHP = $.06 – .07/kWh
Emissions from CHP?

<table>
<thead>
<tr>
<th>Fossil Fuel Consumption and Greenhouse Gas Emissions from a Range of Generation Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil fuel consumption (Btu/kWh)</td>
</tr>
<tr>
<td>Conventional Coal</td>
</tr>
<tr>
<td>Conventional NGCC</td>
</tr>
<tr>
<td>Nuclear</td>
</tr>
<tr>
<td>Advanced Coal with CCS *</td>
</tr>
<tr>
<td>Advanced NGCC with CCS *</td>
</tr>
<tr>
<td>Biomass</td>
</tr>
<tr>
<td>Onshore Wind</td>
</tr>
<tr>
<td>Offshore Wind</td>
</tr>
<tr>
<td>Solar Thermal</td>
</tr>
<tr>
<td>Large Photovoltaic</td>
</tr>
<tr>
<td>Waste heat to power</td>
</tr>
<tr>
<td>Biomass CHP 22 MW</td>
</tr>
<tr>
<td>NG engine CHP 2.5 MW</td>
</tr>
<tr>
<td>NG engine CHP 5 MW</td>
</tr>
<tr>
<td>NG CC CHP 20 MW</td>
</tr>
</tbody>
</table>

* Note: CCS is not a proven technology.

35% lower emissions from CHP!
Annual electricity generation from ‘cogeneration’ sources in Washington State

![Annual electricity generation chart](image-url)
Policy recommendations

- Establish a heat-rate benchmark for thermal power plants that can only be achieved by CHP (RCW 80.80: Greenhouse Has Emission Performance Standard for Baseload Electric Generation)
- Allow utility companies to ‘rate-base’ CHP and district energy investments
- Transmission and Distribution avoidance credit – locational value is real, line loss is real, balancing is real.
- Conservation-side of I937 needs strengthening
 - Set conservation targets higher than renewables – in line with intent of ‘efficiency first’
 - Revise definition of “cost-effective conservation”
 - Introduce concept of “Energy Conservation Credits”, similar to Renewable Energy Credits (RECs)
- Streamline local permitting for onsite power generation, including CHP
- Net Metering rules should be consistent with interconnection standards
 - 1MW generated onsite is equal to 1.12 to 2.25MW of avoided traditional power generation (Carnegie–Melon study 2010), range is dependent on variables
 - 1.75 multiplier for distributed generation (California’s Impacts of DG report 2010)
- Allow for third-party ownership of CHP systems, not just for solar/renewables
- More transparency into utility company IRP process and other stakeholder workgroups that are traditionally: Olympia-centric or utility-company inclusive
- Include carbon emissions avoidance as part of future cost planning