

ANALYZING ELECTRIFICATION OF PUBLIC VEHICLE FLEETS IN WASHINGTON STATE

Presentation on Project Background and Current Progress

> Charles Satterfield and Nick Nigro, Atlas Public Policy May 21, 2020

OVERVIEW

- Project Plan and Objectives
- Task Breakdown
- Current Project Status
- Questions and Next Steps

ABOUT ATLAS PUBLIC POLICY

WWW.ATLASPOLICY.COM

- **Access**: Collect and disseminate publicly available information.
- **Interpret**: Create technology to spur insights and conduct data-driven analyses.
- **Empower**: Strengthen policymakers, businesses, and non-profits' ability to meet emerging challenges and identify and seize opportunities.

Key Personnel

- Nick Nigro: Project Director
- Charles Satterfield: Project Manager
- Nicole Lepre: Lead Analyst
- Conner Smith: Project Analyst
- Josh Rosenberg: Project Analyst

ABOUT WASHINGTON STATE UNIVERSITY ENERGY PROGRAM ENERGY.WSU.EDU

Energy Program

WASHINGTON STATE UNIVERSITY

- Staff of energy engineers, technical experts, data analysts, and software developers located in Olympia, WA
- Address evolving energy challenges in the Pacific Northwest, nationally, and internationally.
- Provides program management, technical expertise, on-site assessments, analytical tools, and training

Key Personnel

- Jim Jensen: WSU Team Lead
- Gary Kaufman: Project Analyst
- Nels Christianson: Senior Software Engineer
- Sheila Lynn Riggs: Project Analyst

ABOUT NATIONAL RENEWABLE ENERGY LABORATORY NREL.GOV

- Spearheads transportation research, development, and deployment to accelerate adoption of low-emission passenger and freight vehicles.
- Collaborates with industry, government, and research partners to create better vehicles, fuels, infrastructure, and policy.
- Expertise in infrastructure analysis for plug-in electric vehicles

Key Personnel

- Eric Wood: NREL Team Lead
- **Stephen Lommele**: Lead Analyst
- **Ranjit Desai:** Technical Associate
- Fan Yang: Technical Associate
- Yanbo Ge: Technical Associate

Organization Chart Project Tasks Overview of Deliverables COVID-19 Impacts

PROJECT PLAN AND OBJECTIVES

PROJECT ORGANIZATION CHART

PROJECT TASKS

ANALYZING ELECTRIFICATION OF PUBLIC VEHICLE FLEETS IN WASHINGTON STATE

BEV BHEV/ERE

County King County Audi A3 Plug In Azure Transit Connect BMW 3-Series Plug in BMN

343

PROJECT GOALS AND DELIVERABLES

- Interactive data visualizations of:
 - Fleet inventory and current electrification status
 - Total cost of ownership comparisons
 - Potential emissions abatement
 - Financing strategies
- Final project report
- Goal: Provide Washington with comprehensive, vehicle-specific electrification cost estimates both today and in the future and deliver actionable information on how to efficiently move forward with fleet electrification

COVID-19 IMPACTS

- Identified as risk to project timeline
 - Delays in project coordination and availability of data
- Currently operating under original schedule
 - Discussion of any potential changes in timeline ongoing; revisited on a biweekly basis
- Increased focus on Task 6 to proactively address any COVIDrelated WA budget shortfalls
- Assessment of effect on automotive industry and EVs ongoing

CURRENT PROJECT PROGRESS

- Task 1 Results
- Task 2 EV Inventory and Analysis details
- Task 3 Substantial Electrification Definition
- Task 4 Methodology and Initial Results
- Task 5 Methodology
 - Task 6 Financing mechanisms

State Agencies, Transit Agencies, School Districts, and Cities and Counties Z

Total Vehicles by Type

TASK 1 INVENTORY

- State and Transit Agencies
- School Districts
- Representative selection of cities from all population levels and geographic location
- Representative selection of counties from varying population sizes and geographies

VEHICLE CLASSES & FUEL TYPES IN STATE AGENCY FLEETS

- Light duty passenger vehicles comprise the bulk of the state agency fleet
- Among state and local governments, the police patrol/interceptor vehicle is a sizeable group
- Low levels of electrification, roughly 3 percent of light-duty vehicles
- No electric vehicles yet in the medium- or heavyduty classes

TRANSIT AND SCHOOL BUS FLEETS

- While King County dominates in numbers, many other transit and school bus fleets have responded to recent e-bus grant opportunities
- OEMs have focused on electrifying common bus sizes

EV FLEET QUESTIONNAIRE

- Purpose was to gather EV readiness insights with fleet data
- Data feeds next level of work
- Moderate participation
- Low electrification efforts, with a few exceptions

Joint Transport Fleet Managemen	ation Committee 2020 Fleet Electrification Stuc t Analysis Study
Organization	
What is the publi	c fleet name?
Respondent Infor	mation
Name	
Phone number	
Email	
Administrative Lo	cation
A dalama a	
Address	
City	

TASK 1 CHALLENGES

TASK 1 RECOMMENDATIONS

•
·
·

Low Data Availability

No centralized database; reliant on survey responses

Support standardized tracking of key data fields across state and/or local government entities

¢Ć	
P	2

Delays in Data Sharing

Delays in data sharing agreements; responsiveness of city and county fleet managers

Capture fleet information for tracking through data sharing agreements

Data Discrepancies

Inconsistencies in vehicle class or fuel type data

Coordinate definitions for vehicle attributes like weight class or mileage tracking

Differences in data conventions across entities Varying definitions for vehicle class or make/model naming conventions or level of detail being recorded

Share the results of this project with recommendations for improved data tracking

MD/HD Fleet Analysis

Explore the cost for electric and diesel truck procurements on a cost-per-mile basis.

L

U

—

 \square

 \Box

TASK : 2 AVAILABLE ALTERNATIVE ELECTRIC VEHICLE REVIEW

Data collected and analysis methodology

TASK 2: APPROACH

Task Goals

- Highlight vehicle classes and types for which electric alternatives are available and most cost effective
- Upfront and total cost of ownership analysis

туре А		Internation Daty vehicles (class 5-0)	2010	NOUN	LITE L-450 - Type A School Bus	DLV	100	
Shuttle	Bus	Medium Duty Vehicles (Class 3-6)	2018	Motiv	EPIC E-450 - Shuttle Bus	BEV	106	
Step V	25	Madium Duty Vahislas // Jass 2.51	-00101		EPIC E-450 - Step Van	BEV	106	
Box [™]		Medium Duty Vehicles (Class 3-6)		Mo ir	EPIC E-450 - Box Truck	BEV	106	
Work		wedit in Duty Vehicles (Class 3-6)		Mo i r	EPIC E-450 - Work Truck	BEV	106	
Specia		Medium Duty Vehicles (Class 3-6)		Mo in	EPIC F-53 - Specialty Vehicle	BEV	127	
Trolle		Medium Duty Vehicles (Class 3-6)	2018	Ma i'	EPIC F-53 - Trolley	BEV	127	
Туре			2018	Mo in	EPIC F-59 - Type C School Bus - 106 kWh	BEV	106	
Туре			2018	Mo i <mark>r</mark>	EPIC F-59 - Type C School Bus - 127 kWh	BEV	127	
Shutt				Mo ir	EPIC F-59 - Shuttle Bus - 106 kWh	BEV	106	
Shutt	^{Bus} • Data gathered on an additional	300+ makes and models		Mo i'	EPIC F-59 - Shuttle Bus - 127 kWh	BEV	127	
Step \		Medium Duty Vehicles (Class 3-6)		Mo ir	EPIC F-59 - Step Van - 106 kWh	BEV	106	
Step \	Currently the most compre	enensive source for EV		Mo i <mark>r</mark>	EPIC F-59 - Step Van - 127 kWh	BEV	127	
Schoo	Bus alternatives available			Blu Bird	All American RE Electric	BEV	160	
Mini S	 bool Bus 50+ makes and models in 1 	the existing tool (Class 3-6)		io	LionA 80 kWh	BEV	80	
Mini S	hool Bus • Available and soon-to-be a	vailable models (Class 3-6)		lio Electric	LionA 160 kWh	BEV	160	
Туре	School Bus	Heavy-Duty Vehicles (Class 7-8)		lio Electric	LionC 88 kWh	BEV	88	
Туре	School Bus • Battery Electric and Fuel C	ell Heavy-Duty Vehicles (Class 7-8)		io Electric	LionC 132 kWh	BEV	132	
Туре	School Bradded complete specification ar	nd pricing data on 90+ mak	es:020	lio Electric	LionC 176 kWh	BEV	176	
Туре	School Brand models	Heavy-Duty Vehicles (Class 7-8)		lio Electric	LionC 220 kWh	BEV	220	
Type I	School Bupricing data from manufacturers	and public sources includ	ing ²⁰²⁰	lio Electric	LionD 132 kWh	BEV	132	
Type I	School BWA state competitive contracts	EV specifications from	2020	lio Electric	LionD 176 kWh	BEV	176	
Type I	School Bumanufacturer, websites	Ev specifications nom		lio Electric	LionD 220 kWh	BEV	220	
Shuttl	Bus			io Electric	LionM 80 kWh	BEV	80	
Shuttl	Bus • Makes and models covering:			io Electric	LionM 160 kWh	BEV	160	
Class	truck • Sedans	 Cargo/Passenger Vans 	2020	Electric	Lion6 168 kWh	BEV	168	
Class	truck • SUVs	Med Transit Buses		io Electric	Lion6 252 kWh	BEV	252	
Class	• Pickup Trucks	• Refuse Vehicles		Electric	Lion6 336 kWh	BEV	336	
Class	Single Axle Truck • Motorcycles	School Buses 7-8		io	Lion8P - Single Axle 168 kWh	BEV	168	
Class	Single Axle Truck • Box/Flatbed Trucks	• Class 8 Tractors 7-8		Electric	Lion8P - Single Axle 252 kWh	BEV	252	
Class	Single Axle Truck • Work/Service Trucks	Terminal Tractors		io Electric	Lion8P - Single Axle 336 kWh	BEV	336	
Class	Double Axle Truck • Step Vans	Heavy-Duty Vehicles (Class 7-8)		io Electric	Lion8P - Double Axle 168 kWh	BEV	168	
Class	Double Axle Truck Shuttle Buses			io	Lion8P - Double Axle 252 kWh	BEV	252	
Class				io	Lion8P - Double Axle 336 kWh	BEV	336	
Class				lectric	Lion8P - Double Axle 420 kWh	BEV	420	
Class				io	Lion8P - Double Axle 504 kWh	BEV	504	
Class				io Electric	Lion 8T 252 kWh	BEV	252	
Class				io Electric	Lion 8T 336 kWh	BEV	336	
Class õ	Tractor	Heavy-Duty Vehicles (Class 7-8)	2020	Lion Electric	Lion 8T 420 kWh	BEV	420	
Class 8	Tractor	Heavy-Duty Vehicles (Class 7-8)	2020	Lion Electric	Lion 8T 504 kWh	BEV	504	
Class 8	Tractor	Heavy-Duty Vehicles (Class 7-8)	2020	Lion Electric	Lion 8T 558 kWh	BEV	588	20
Class 9	Defuse Truck	Hanny Duty Vahielas (Class 7.9)	2020	Lon Flootric	Lion@ Defuse Truck Double Aule 160 M/b	DEV	1_0	_0

TOTAL COST OF OWNERSHIP ANALYSIS

- Combine data at local, regional, and state level to complete localized TCO analysis
 - Use actual fleet inventory data (Task 1) to estimate costs of fleet transition by vehicle
 - State agencies
 - Transit agencies
 - School districts
 - Use infrastructure cost estimates (Task 4)
- Approach will result in detailed, localized estimates for conversion to electric vehicles
 - 8,000+ light-duty vehicles have been mapped onto present-day replacements and suitable electric alternatives
 - Includes localized lifetime emissions estimates for Task 5

TASK 2: SAMPLE OUTPUT

- Interactive analysis results dashboards
- Vehicle-specific total cost of ownership comparisons between conventional and electric alternative vehicles for over 20,000 vehicles
- Highlight use cases, regions, and even specific vehicles which could be optimal targets for electrification
- Actionable, decision relevant information for policy-makers and fleet managers
 - Empowers end users to perform their own analyses on the data

Use Case	Drivetrain	MSRP	MSRP Reduction	Vehicle Incentive	Years in Use	Maintenance Cost	Ownership Structure	Charging Scenario	Charging Stations	Public Charging Price	Election
Cargo Van	BEV	\$91,231	30% Reduction	Yes	7	30% Reduction	FMV (Closed-End) Lease	Depot Charging	3	\$0.33	\$0.08
Cargo Van	BEV	\$91,231	30% Reduction	Yes	7	30% Reduction	FMV (Closed-End) Lease	Depot Charging	3	\$0.50	\$0.12
Cargo Van	BEV	\$91,231	30% Reduction	Yes	7	30% Reduction	FMV (Closed-End) Lease	Depot Charging	3	\$0.67	\$0.16
Cargo Van	BEV	\$104,264	20% Reduction	Yes	7	30% Reduction	FMV (Closed-End) Lease	Depot Charging	3	\$0.33	\$0.08
Cargo Van	BEV	\$104,264	20% Reduction	Yes	7	30% Reduction	FMV (Closed-End) Lease	Depot Charging	3	\$0.50	\$0.12
Cargo Van	BEV	\$91,231	30% Reduction	Yes	5	30% Reduction	FMV (Closed-End) Lease	Depot Charging	3	\$0.33	\$0.08
Cargo Van	BEV	\$104,264	20% Reduction	Yes	7	30% Reduction	FMV (Closed-End) Lease	Depot Charging	3	\$0.67	\$0.16
<											>

TASK 3: PROJECTING COSTS OF SUBSTANTIAL ELECTRIFICATION

J

TASK 3: APPROACH

Task Goals

- Project costs of substantial conversion to battery/fuel cell fleets by 2025, 2030, 2035
 - Vehicle acquisition costs
 - Infrastructure costs
 - Other associated costs
- Identify financial and other barriers to electrification

LIGHT-DUTY SUBSTANTIAL ELECTRIFICATION

- Substantial electrification set at achieving 50 percent of yearly new vehicle purchases by 2025, 2030, or 2035
 - Based on Washington EV Fleets Initiative and input from Staff Workgroup
 - Calculating additional cost will provide estimate of necessary capital commitment
- "Top down" view of electrification across entire fleet
 - Allows for regional or agency variances
- Scenarios calculated based on average rates of fleet turnover in state agency fleets
 - Final adoption curves will be based on total cost of ownership projections

MEDIUM- AND HEAVY-DUTY SUBSTANTIAL ELECTRIFICATION

- "Top down" view of electrification across entire fleet
 - Allows for regional or agency variances
- Medium- and Heavy-duty substantial electrification set based on California Air Resources Board targets for new vehicle purchases and input from Staff Workgroup
 - Granular breakdown of vehicles based on typical use cases for various weight classes
 - Allows for collaboration between states
- Scenarios calculated based on average rates of fleet turnover by vehicle class from transit and state agencies
 - Final adoption curves will be based on total cost of ownership projections
- Approximately 7% of transit buses are electrified already
 - Less than 1% electrification for all other vehicle classes based on most recent data

	Electric Vehicle	% of Total Fleet that are Electric in 2035						
Vehicle Class	Purchases in Target Year (%)*	Rapid	Moderate	Slow				
Class 2B-3	15%	21%	17%	13%				
Class 4-7	50%	68%	55%	42%				
Class 8 Tractor	15%	15%	12%	9%				
Transit Buses	100%	100%	93%	78%				
School Buses	50%	53%	43%	33%				

* Target Year is 2025 for Rapid, 2030 for Moderate, and 2035 for Slow

CONSIDERATIONS

Credit for PHEVs

Based on number of electric miles traveled

Set level of electric purchases or timeline by entity

Budget Population or fleet size Existing Infrastructure

Likely EV adoption curves

Based upon total cost of ownership projections

Adheres to existing rules WAC 194-28 and 194-29 requiring fleets to pursue alternative fuel vehicles "to the extent practicable"

TASK 4: REQUIRED STATEWIDE CHARGING NETWORK

Methodology and Preliminary Estimates

BA

QMD

TASK 4: APPROACH

Task Goals

- Identify the projected number and location profile of electric vehicle fueling stations needed statewide to provide fueling for public fleets
- Identify existing public and private charging stations

TASK 4: PRELIMINARY OUTPUT

- Majority of charging demand coming from medium- and heavy-duty vehicles
- Home Charging an inexpensive option currently representing a small share of overall charging demand
- State vehicles modeled to rely on public charging options sparingly
 - Charging infrastructure for state vehicles will be primarily installed and operated by the state

*Chart includes all charging scenarios, final figures will depend on determination of optimal charging strategy

TASK 5: APPROACH

Task Goals

- Identify the areas of the state that would experience the greatest public health benefits from air pollution reductions resulting from fleet conversion
- Estimate the pollution reduction that would result from fleet conversion

Collect air quality and public health data from state agencies Produce emissions estimates from Fleet Procurement Analysis Tool Combine air quality, public health, and emissions data to produce series of descriptive maps

TASK 5 DATA SOURCES

- Emissions:
 - WA Department of Ecology
 - Task 2 Emissions analysis
- Public Health:
 - WA department of public health

33

ual resources, and details of Gov. Inslee's Stay Home, Stay Healthy proclamation: <u>Coronavirus.wa.gov</u>

TASK 6: FINANCING STRATEGIES AND MECHANISMS

Background Research and Analysis Methodology

lanning, analysis, and implementation of the state's operating and capital budgets. We have the primary responsibility for making budget I presenting the Governor's budget proposal to the Legislature and the public. After budgets are approved by the Legislature and signed into law by Cactivities for conformance with executive and legislative intent.

Agency budget officers forum series

pplemental budget

upplemental budget

Agency expenditure monitoring

and a second state of a second s

What's new

Federal funds distributed for COVID-19 outbreak response

Memo: Immediate actions to capture operating budget savings [pdf]

Gov Inslee issues directive to state agencies

TASK 6: APPROACH

Task Goals

- Identify and analyze financing mechanisms and strategies that could accelerate the transition of publicly owned vehicles to battery and/or fuel cell electric vehicles
 - Energy or carbon savings
 performance contracting
 - Utility grants and rebates
 - Revolving loan funds
 - State grant programs
 - Private third-party financing
 - Fleet management services
 - Leasing
 - Vehicle use optimization
 - Vehicle to grid technology

COMPARATIVE ANALYSIS

- Reviews completed for all financing strategies
 outlined in proviso
 - Focus on examples of policies in neighboring states
 - Highlights of success and failures
- Apply estimates of financing strategies to Task 2 Cost Analysis
 - Location- and vehicle-specific estimates of public policies' effect on cost and electrification potential
- Estimates based on data gathered from existing programs in Washington or other states
- Highlights actionable, decision-relevant information for Washington policy makers
 - Allows for users to continue to run their own analyses after the completion of the project

Pictures demonstrate cost comparisons of the same vehicles with and without vehicle incentives

QUESTIONS AND NEXT STEPS

NEXT STEPS: MAY -JULY

WWW.ATLASPOLICY.COM WASHINGTON, DC USA

> Charles Satterfield and Nick Nigro charles.satterfield@atlaspolicy.com nick.nigro@atlaspolicy.com

APPENDIX

PROJECT GOALS BY TASK

Task 1: Inventory of Public Fleets	•Establish a baseline for the size and current electrification status of the public vehicle fleet in Washington state
Task 2: Available EV Alternative Review	 Highlight vehicle classes and types for which electric alternatives are available and most cost effective Upfront and total cost of ownership analysis
Task 3: Projected Costs of Substantial Electrification	 Project costs of substantial conversion to battery/fuel cell fleets by 2025, 2030, 2035 Identify financial and other barriers to electrification
Task 4: Identify Statewide Required Charging Network	 Identify the projected number and location profile of electric vehicle fueling stations needed statewide to provide fueling for public fleets Identify existing public and private charging stations
Task 5: Identify Areas Benefitting Most From Electrification	 Identify the areas of the state that would experience the greatest public health benefits from air pollution reductions resulting from fleet conversion Estimate the pollution reduction that would result from fleet conversion
Task 6: Identify and Analyze Financing Mechanisms	•Identify and analyze financing mechanisms and strategies that could accelerate the transition of publicly owned vehicles to battery and/or fuel cell electric vehicles
Task 7: Coordinate with the Staff Workgroup	Solicit inputsReview findings and draft materials
Task 8 & 9: Present Research & Draft and Final Reports	 Present research at May and September meetings Prepare Draft by Aug 10, Draft Final Sep. 10, and Final Sep. 30

AREAS OF RESPONSIBILITY

DELIVERABLES BY TASK

Vehicle

Inventory

Database

Web-based

Interactive

Dashboard

Interactive

Dashboard

Task 2: Available EV Alternative Review

PROJECT **STATUS**

- Task 1:
 - Complete outside of draft report chapte •
- Task 2:
 - All data on available alternative electric • gathered
 - Cost analysis in final stages of preparation
- Task 3:
 - Substantial electrification threshold set measurement defined •
 - Analysis approach defined; awaiting out Task 2 •
- Task 4:
 - modeling inputs complete and sample ٠
 - Awaiting output from Task 3 •
- Task 5:
 - Delayed; Awaiting data gathering and a • outputs
- Task 6:
 - Ahead of schedule; financing mechanism and background research complete •
 - Draft report chapter begun
- Project has experienced delays due ٠ corónavirus
 - Task 2, 3, 4, and 5 are roughly on behind
 - Currently still operating on origin ٠ schedulé
 - **Current Week:** Plan Duration Actual 18 % Complete 💹 Actual (beyond plan) 🛛 % Complete (beyon

	ACTIVITY	LEAD	SUPPORT	PLAN START	PLAN	ACTUAL	ACTUAL	PERCENT COMPLETE	Jan 1 2 3 4	Feb	March	April	May	June	July
	Task 1								1201		5 10 11 12	10 11 10 10	17 10 15 10		20 20 27
	Data Collection Planning	WSU	Atlas	1	4	1	4	100%							
	DOL Data Collection	WSU		1	2	1	7	100%							
	Agency Data Collection	WSU		1	6	1	6	100%							
	School Bus Data Collection	WSU		1	6	1	6	100%							
	Fleet Questionnaire Development	WSU	Atlas/NREL	1	4	1	4	100%							
	Fleet Questionnaire Tracking	WSU	NREL	5	3	5	5	100%							
	Inventory Creation	WSU	Atlas	7	4	7	5	90%							
	Dashboard Creation	Atlas	WSU	12	2	13	4	50%							
	Draft Chapter on Findings	WSU		12	12	13	5	10%							
	Task 2					10									
or	Gather Data on EV Makes/Models	Atlas		З	4	3	8	100%							
	Gather Data on Equivalent ICE	, terao		5	-	5	0	100/0				_			
	Makes/Models	Atlas	WSU	6	2	6	0	100%							
vabielee	Lindate Elect Procurement Analysis			0	Z	0	5								
venicies	Tool Assumptions	Atlas		6	2	5	12	80%							
	Assemble Data Tables for Multivariate			0	5	5	15								
on	Assemble Data Tables for Multivariate	Atlas		0	2	0	0	80%							
	Analysis Deview Deculta France Archusia	0.el		9	2	9	9				_				
	Review Results From Analysis	Atlas		18	2										
and	Outline Report Chapter	Atlas		20	2										
	Build Data Visualizations	Atlas		20	5										
tput from	Draft Report Chapter	Atlas		23	6										
ep de l'oni	Task 3										_				
	Define Substantial Electrification	Atlas	NREL/WSU	1	8	1	11	100%							
	Fleet Questionnaire Development	WSU	Atlas/NREL	1	4	1	4	100%							
analysis run	Fleet Questionnaire Tracking	WSU	NREL	5	3	5	6	100%			_				
	Gather Output From Tasks 2 and 4	NREL	Atlas	14	1	16	3	20%							
	Establish DOE R&D Scenarios	NREL		15	1	16	3								
	Build Out Inputs for EV-FAST	NREL		16	2	16	3								
1 1 .	Task 4														
naiysis	Review Fleet Questionnaire Data	NREL	WSU	5	3	8	5	80%							
	Build Out Inputs for EVI-Pro	NREL		8	3	8	5	50%							
	Review Results From Analysis	NREL		11	2	12	4	20%							
and defined	Outline Report Chapter	NREL		13	2										
ns delined	Build Data Visualizations	NREL		13	5										
	Draft Report Chapter	NREL		16	6										
	Task 5														
to	Gather Public Health Data	WSU	NREL	10	4	1		25%							
10	Gather Emissions Data From Tasks 2	Atlas	NREL	14	2	16	3		_						
	Build Interactive Maps	NREL		16	4										
ie month	Outline Report Chapter	NREL		20	2										
	Draft Report Chapter	NREL		22	4										
مما	Task 6														
าลเ	Gather Data on Financing Mechanisms	Atlas	wsu	14	4	12	7	90%							
	Update Fleet Procurement Analysis														
	Tool Assumptions	Atlas		16	2	15	4	50%							
	Assemble Data Tables for Multivariate			10	2	10	-								
	Analysis	Atlac		18	2	16	2	25%							
Start	Paview Pasults From Applysis	Atlac		20	с С	10	5								
Juit	Outline Report Chapter	Atlas		22	2										
(aela ba	Build Data Visualizations	Atlas		20	2										
ia pian)	Droft Deport Charter	Atlas		20	3										44
	Drait Report Chapter	Atlas		20	4										

28

TASK 1 INVENTORY

- State and Transit Agencies
- School Districts
- Representative selection of cities from all population levels and geographic location
- Representative selection of counties from varying population sizes and geographies

TASK 4: CHARGING SCENARIOS

Charger Type	Level 2	Level 2 (Home)	Level 2 (Depot)	DCFC	DCFC	Heavy DCFC
Location Public		Home	Depot	Public	Depot	Depot
Connector Type	J1772	J1772	J1772	CHAdeMO/CCS 50 kW	CHAdeMO/CCS 50 kW	CHAdeMO/CCS 60- 150 kW
LDV	Y	Y	Y	Y	Y	
Class 2B-3	Y		Y	Y		
Class 4-7					Y	Y
Class 8					Y	Y
Class 7-8 (Transit Bus)					Y	Y
School Bus					Y	Y

- Low power (Level 2) and high power (DCFC) charging scenarios included for all vehicles up to class 3
 - Public and private charging networks
- Only high power (DCFC) charging scenarios included medium- and heavy-duty vehicles
 - Private depot charging only
 - Varying power levels

TASK 6: FINANCING STRATEGIES

- Atlas EV Hub
 - Tracks policy and financing programs by state
 - Review of existing policies, particularly in neighboring states, highlighting success or failures
- Reviews of financing strategies completed for:
 - Energy or carbon savings performance contracting in California and Colorado
 - Utility grants and rebates in California and Washington
 - Revolving loan funds in Washington and California
 - State grant programs in California and New York
 - Private third-party financing in Indiana and Vermont
 - Fleet management services in Indiana
 - Leasing in California
 - Vehicle to grid technology in California and Virginia
 - Clean Fuel Standards and Credit Systems in California and Oregon
 - Bundled Procurements and Cooperative Purchasing in New York

